12 research outputs found

    ACES: Translation Accuracy Challenge Sets for Evaluating Machine Translation Metrics

    Full text link
    As machine translation (MT) metrics improve their correlation with human judgement every year, it is crucial to understand the limitations of such metrics at the segment level. Specifically, it is important to investigate metric behaviour when facing accuracy errors in MT because these can have dangerous consequences in certain contexts (e.g., legal, medical). We curate ACES, a translation accuracy challenge set, consisting of 68 phenomena ranging from simple perturbations at the word/character level to more complex errors based on discourse and real-world knowledge. We use ACES to evaluate a wide range of MT metrics including the submissions to the WMT 2022 metrics shared task and perform several analyses leading to general recommendations for metric developers. We recommend: a) combining metrics with different strengths, b) developing metrics that give more weight to the source and less to surface-level overlap with the reference and c) explicitly modelling additional language-specific information beyond what is available via multilingual embeddings.Comment: preprint for WMT 202

    ACES: Translation Accuracy Challenge Sets at WMT 2023

    Full text link
    We benchmark the performance of segmentlevel metrics submitted to WMT 2023 using the ACES Challenge Set (Amrhein et al., 2022). The challenge set consists of 36K examples representing challenges from 68 phenomena and covering 146 language pairs. The phenomena range from simple perturbations at the word/character level to more complex errors based on discourse and real-world knowledge. For each metric, we provide a detailed profile of performance over a range of error categories as well as an overall ACES-Score for quick comparison. We also measure the incremental performance of the metrics submitted to both WMT 2023 and 2022. We find that 1) there is no clear winner among the metrics submitted to WMT 2023, and 2) performance change between the 2023 and 2022 versions of the metrics is highly variable. Our recommendations are similar to those from WMT 2022. Metric developers should focus on: building ensembles of metrics from different design families, developing metrics that pay more attention to the source and rely less on surface-level overlap, and carefully determining the influence of multilingual embeddings on MT evaluation.Comment: Camera Ready WMT 2023. arXiv admin note: text overlap with arXiv:2210.1561

    Cross-lingual Intermediate Fine-tuning improves Dialogue State Tracking

    Get PDF
    Recent progress in task-oriented neural dialogue systems is largely focused on a handful of languages, as annotation of training data is tedious and expensive. Machine translation has been used to make systems multilingual, but this can introduce a pipeline of errors. Another promising solution is using cross-lingual transfer learning through pretrained multilingual models. Existing methods train multilingual models with additional code-mixed task data or refine the cross-lingual representations through parallel ontologies. In this work, we enhance the transfer learning process by intermediate fine-tuning of pretrained multilingual models, where the multilingual models are fine-tuned with different but related data and/or tasks. Specifically, we use parallel and conversational movie subtitles datasets to design cross-lingual intermediate tasks suitable for downstream dialogue tasks. We use only 200K lines of parallel data for intermediate fine-tuning which is already available for 1782 language pairs. We test our approach on the cross-lingual dialogue state tracking task for the parallel MultiWoZ (English -> Chinese, Chinese -> English) and Multilingual WoZ (English -> German, English -> Italian) datasets. We achieve impressive improvements (> 20% on joint goal accuracy) on the parallel MultiWoZ dataset and the Multilingual WoZ dataset over the vanilla baseline with only 10% of the target language task data and zero-shot setup respectively.Comment: EMNLP 2021 Camera Read

    Extrinsic Evaluation of Machine Translation Metrics

    Full text link
    Automatic machine translation (MT) metrics are widely used to distinguish the translation qualities of machine translation systems across relatively large test sets (system-level evaluation). However, it is unclear if automatic metrics are reliable at distinguishing good translations from bad translations at the sentence level (segment-level evaluation). In this paper, we investigate how useful MT metrics are at detecting the success of a machine translation component when placed in a larger platform with a downstream task. We evaluate the segment-level performance of the most widely used MT metrics (chrF, COMET, BERTScore, etc.) on three downstream cross-lingual tasks (dialogue state tracking, question answering, and semantic parsing). For each task, we only have access to a monolingual task-specific model. We calculate the correlation between the metric's ability to predict a good/bad translation with the success/failure on the final task for the Translate-Test setup. Our experiments demonstrate that all metrics exhibit negligible correlation with the extrinsic evaluation of the downstream outcomes. We also find that the scores provided by neural metrics are not interpretable mostly because of undefined ranges. We synthesise our analysis into recommendations for future MT metrics to produce labels rather than scores for more informative interaction between machine translation and multilingual language understanding.Comment: ACL 2023 Camera Read

    Multi3NLU++: A Multilingual, Multi-Intent, Multi-Domain Dataset for Natural Language Understanding in Task-Oriented Dialogue

    Get PDF
    Task-oriented dialogue (ToD) systems have been widely deployed in many industries as they deliver more efficient customer support. These systems are typically constructed for a single domain or language and do not generalise well beyond this. To support work on Natural Language Understanding (NLU) in ToD across multiple languages and domains simultaneously, we constructed Multi3NLU++, a multilingual, multi-intent, multi-domain dataset. Multi3NLU++ extends the English-only NLU++ dataset to include manual translations into a range of high, medium, and low resource languages (Spanish, Marathi, Turkish and Amharic), in two domains (banking and hotels). Because of its multi-intent property, Multi3NLU++ represents complex and natural user goals, and therefore allows us to measure the realistic performance of ToD systems in a varied set of the world's languages. We use Multi3NLU++ to benchmark state-of-the-art multilingual models for the NLU tasks of intent detection and slot labeling for ToD systems in the multilingual setting. The results demonstrate the challenging nature of the dataset, particularly in the low-resource language setting, offering ample room for future experimentation in multi-domain multilingual ToD setups

    MULTI3NLU++: A Multilingual, Multi-Intent, Multi-Domain Dataset for Natural Language Understanding in Task-Oriented Dialogue

    Full text link
    Task-oriented dialogue (TOD) systems have been widely deployed in many industries as they deliver more efficient customer support. These systems are typically constructed for a single domain or language and do not generalise well beyond this. To support work on Natural Language Understanding (NLU) in TOD across multiple languages and domains simultaneously, we constructed MULTI3NLU++, a multilingual, multi-intent, multi-domain dataset. MULTI3NLU++ extends the English only NLU++ dataset to include manual translations into a range of high, medium, and low resource languages (Spanish, Marathi, Turkish and Amharic), in two domains (BANKING and HOTELS). Because of its multi-intent property, MULTI3NLU++ represents complex and natural user goals, and therefore allows us to measure the realistic performance of TOD systems in a varied set of the world's languages. We use MULTI3NLU++ to benchmark state-of-the-art multilingual models for the NLU tasks of intent detection and slot labelling for TOD systems in the multilingual setting. The results demonstrate the challenging nature of the dataset, particularly in the low-resource language setting, offering ample room for future experimentation in multi-domain multilingual TOD setups.Comment: ACL 2023 (Findings) Camera Read

    ACES: Translation Accuracy Challenge Sets for Evaluating Machine Translation Metrics

    Full text link
    corecore